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Abstract

Concentration polarization is a critical problem for nanofiltration membranes, as it reduces permeate flux and increases operating
costs. This study aims to assess the efficacy of air spraying technology as an innovative approach to enhance nanofiltration
membrane performance, specifically in water treatment. The methodology focused on conducting comprehensive trials using
simulated water and on implementing air-spraying technology at flow rates ranging from 1.5 to 4.5 liters per minute. The membrane's
performance was tested under a range of conditions, including varied input concentrations (2,000 to 15,000 ppm), pressures (4 to 6
bar), water flow rates, and temperatures (20 and 32°C). The results showed that adding air efficiently reduces concentration
polarization, thereby significantly increasing permeate flux and the effectiveness of sodium chloride rejection. At 2,000 ppm and 6
bar, the most significant flow was 168 liters/h, with a rejection ratio of 90.8%. The highest achievable flux was likewise reached at
32°C, with an excellent rejection ratio of 91.75%. The study, on the other hand, indicated that increasing the feed concentration
worsened the permeability flux. This study demonstrates that air-spraying technology is an effective means of improving
nanofiltration membrane performance.
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1- Introduction

oxidation processes [6, 7]. There has been growing use of
membrane technology for water recycling and reuse,
including microfiltration (MF), ultrafiltration (UF),
nanofiltration (NF), and reverse osmosis (RO). Various
industries have adopted these membrane technologies
owing to their efficiency, minimal environmental impact,
high  productivity, flexible  configuration, and
sustainability[4, 8]. Nanofiltration (NF) is a membrane-
based technology that offers a promising approach to

A primary environmental and financial concern is the
global problem of water salinity, especially in highly
saline water. Numerous important sectors are adversely
affected by high salinity. It jeopardizes food security in
agriculture by degrading soil and lowering crop yields.
Environmentally, freshwater aquifers can become
contaminated by saltwater intrusion, which damages
aquatic ecosystems and lowers biodiversity. Using
extremely saline water in industry accelerates equipment

corrosion and requires costly treatment, increasing
production costs. Furthermore, long-term use of saline
drinking water can harm a person's health by causing
kidney and digestive issues. Approximately 1 billion
people worldwide lack access to clean, efficient drinking
water sources. This is due to the inadequate management
of water sources in both urban and rural regions across
many parts of the world.

Therefore, millions of individuals are exposed to
hazardous levels of microbiological and chemical
contaminants in their drinking water daily [1-3]. In recent
years, scientists and engineers have recognized the need
for renewed, cost-effective approaches to effective water
decontamination due to the significant increase in water
pollution levels [4, 5]. Several advanced technologies
have been employed for treating liquid waste, including
membrane filtration, adsorption techniques, and advanced

treating salinity in various water sources, including
brackish water, seawater, and even some types of
industrial wastewater. Its effectiveness stems from its
semi- permeable membranes with pore sizes permeable
membranes with pore sizes
usually between 1 and 10 nanometers, which enables the
divalent ions to be rejected selectively  (e.g., calcium,
magnesium, sulfate) and larger organic molecules, while
permitting the passage of monovalent ions (e.g., sodium,
chloride) and water [9-11].

Nanofiltration (NF) membranes serve as an efficient
alternative for water treatment owing to their numerous
benefits. These membranes operate at reduced operating
pressures, thereby reducing energy usage and operational
expenses. They also exhibit elevated flux, enhancing
treatment  efficiency. Furthermore, they provide
exceptional retention for organic molecules and
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multivalent anion salts while allowing the transfer of
monovalent ions. These attributes make them a cost-
effective option, given their comparatively low
investment costs relative to alternative technologies [12,
13]. Air sparging, in which an air stream is bubbled
through a liquid to boost flux, increase selectivity, and
reduce fouling, has been used in nanofiltration. Several
studies have documented air sparging in various
membrane configurations to enhance flow, increase
permeation cycle, and adjust selectivity.

The hydrodynamics of the gas/liquid two-phase flow
have been described, and turbulence near the membrane
surface has resulted in flux enhancement and altered
foulant patterns. It has been employed in numerous
applications, including drinking water and biological
treatment, macromolecule separation, and in different
membrane geometries such as hollow fiber, flat sheet, and
tubular membranes. Concentration polarization and
membrane fouling during the process are among the most
common problems in membrane separation processes,
particularly with NF membranes, due to their diverse
effects on flux. The accumulation of rejected solutes
within a thin boundary layer adjacent to the membrane
surface is known as concentration polarization [9, 12].

The dissolved particles are bound to the surface of the
membrane by the forces of adhesion, which are in
equilibrium with the shear stress to which they are
subjected. The membrane material subsequently fouls,
allowing it to enter the pores and eventually block them
[14, 15]. Therefore, modifying the hydrodynamic
conditions at the membrane surface to promote a more
turbulent flow regime could improve the elimination
effectiveness of these pollutants [16]. The implementation
of air sparging during filtration may be a capable fouling
control technique for UF membranes [17, 18]. Shear force
can be induced on the feed side by air sparging on the
membrane surface, which causes bubbles to rise along the
membrane; in turn, this prevents deposition by enhancing
the back transport of foulants from the membrane surface
[19].

The flux of water and solutes through an NF membrane
is characterized by the mass transfer coefficient
multiplied by the driving force. The driving force is due
to osmotic and applied pressure differentials that cause
the water to flow through NF membranes. The water flux
(Jw) equation is [20]:

Jw = K, (bp — Amr) (1)

Where the constant of the permeability of water is K,,,,
Ap is the pressure difference, while A is the gradient in
osmotic pressure [20].

The solute flux is due to the concentration gradient that
performs as the driving force, and the solute flux equation
is [21]:

Js = K,(Cf — Cp) 2

Where Js is the solute flux, Ks is the solute permeability

constant, Cf is the concentration of feed, and Cp is the
concentration of permeate.
The purpose of this study is to evaluate the effect of air
sparging on the performance of a nanofiltration-based
desalination process. This study also investigated the
effects of different operating conditions and values on
permeate flux and rejection. These operating conditions
include temperature, water flow rate, pressure, and NaCl
concentration, with and without air sparging.

2- Experimental work

The nanofiltration system (with and without air
sparging) has been implemented using a spiral-wound
polyamide thin-film composite (The right fit CSM:
NE1812-C, Korea) with an effective area of 0.4 m2. The
simulated solution was prepared using NaCl (99.9%,
Central Drug House (P) Ltd., India) and deionized water.

Fig. 1 shows a schematic representation of the NF
equipment. A diaphragm pump (AQUA LOTUS: AQ-
400GPD) pumped the feed from a tank to the NF
membrane. Three pressure gauges measured the pressure
of water and air entering and leaving the membrane. To
prevent water from returning to the air, isolation valves
for the air entrance and departure included one-way
valves.

Both the permeate and concentrate streams are
recirculated to the feed tank, maintaining a constant feed
concentration throughout the operation. Meanwhile, air
and water are simultaneously pumped into the membrane.
The operating parameters were, feed concentrations
between 2000 and 15000 ppm, pressures between 4-6 bar,
air flow rates 1.5-4.5 L/min, a temperature of 321 and
20+1° C and a constant water flow rate of 1 L/min. Each
experiment was run for 10 min. To evaluate permeate
concentration, a conductivity meter (CRISON Basic 30,
Spain) was used. The flux was obtained using the
following equation [22]:

Jw == (3)

T amat

Where the water flow volume from the feed side
to the permeate side is AV, the active area of the
membrane is Am, and the time experiment is At. The
equation of rejection is [7]:

Rej=1-5 (4)
3- Results and discussion

Experiments were conducted to examine the
performance of a nanofiltration (NF) membrane with and
without air. The results revealed that the presence of air
considerably increases the membrane's permeate flux.
This improvement addresses the impact of air bubbles,
which cause turbulence at the membrane surface. This
turbulence dislodges accumulated solute particles by a
process known as "back-diffusion." The agitation also
disrupts the boundary layer, minimizing the buildup of
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dissolved materials and preventing pore blockage [23, 24,
25]. Consequently, the solute concentration at the
membrane surface decreases, reducing concentration
polarization and increasing permeate flux by a
considerable amount without compromising membrane
integrity [26, 27].

Table 1 demonstrates the effect of air sparging on flux.
The data demonstrate that permeate flux is substantially
affected by operating pressure, feed concentration, and air
flow rate, with the addition of air continuously improving
performance. In the pressure experiments, flux increased
with pressure in both cases, from 33 to 70.5 L/m2.h
without air and from 69 to 127.5 L/m2.h with air as the
pressure climbed from 4 to 6 bar. Air addition showed the
most significant relative improvement at lower pressures,
with a flux increase of roughly 109% at 4 bar compared to
81% at 6 bar, demonstrating that air scouring is more
effective when the pushing force from pressure is lower.

In the concentration experiments, flux declined
dramatically as feed concentration increased, dropping
from 70.5 to 8.25 L/m2.h without air and from 127.5 to 12
L/m2.h with air when concentration grew from 4000 ppm
to 15,000 ppm. While air addition still enhanced flow
under all conditions, the relative benefit declined at higher
concentrations due to the more decisive influence of
osmotic pressure and fouling. For air flow rate (Q.), the
results suggested an optimum at 1.3 L/min, when flux
reached 63 L/m2.h with air, compared to 58.5 L/m2.h at 1
L/min and 55.5 L/m2h at 1.5 L/min. This shows that
while moderate airflow helps mixing and surface
cleaning, excessive airflow may cause instability or
diminish effective contact with the membrane surface.
Overall, air addition greatly enhances membrane
performance, especially at lower pressures and
concentrations, although its success depends on adjusting
both pressure and air flow rate.
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Fig. 1. Schematic diagram of a nanofiltration system with air sparing

Table 1. Values for fluxes at different applied pressures, initial concentrations and water flow rate (QA) for systems
with and without air sparging

Pressure (bar) 4 5 6
flux without air (L/m?2. h) 33 51 70.5
flux with air (L/m?. h) 69 97.5 127.5
Initial Conc. (ppm) 4000 10000 15000
flux without air (L/m?. h) 70.5 15 8.25
flux with air (L/m2. h) 1275 25.5 12
water flow rate Qa (L/min) 1 13 15
flux without air (L/m?. h) 75 16.5 30
flux with air (L/m?. h) 58.5 63 55.5

The impact of operating pressure on permeate flux is
shown in Fig. 2. The results indicate that at an air flow
rate of 2.5 L/min, the permeate flux increased from 78.78

to 169.69 L/m2. hr. by increasing the pressure from 4 to 6
bar, after that the flux begins to decrease. The operating
pressure directly influences the permeate flux in NF
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systems. This behavior is consistent with that of Sentana
and Al-Alawy [28, 29]. who demonstrate that higher
permeate flux is typically achieved by applying high
membrane pressure. Excessive pressure may compromise
results, preventing one from fully reaping the benefits of
the higher flow.
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Fig. 2. Flow rates of air impact on the flux at various

pressures and (C=2000 ppm, Quzo= 1 Liter/min, and
Temp = 32°C)

The driving force for the process increases with
increasing applied pressure, thereby enhancing the
permeation rate. Pressure and permeation flux are linearly
associated, suggesting that concentration polarization
does not occur at the membrane surface [30].
Concentration polarization occurred at higher pressures,
leading to a drop in permeation rate [31].

The rejection percentage of NaCl increased from 83.8%
to 90.8% as pressure increased from 4 to 6 bar at a 2.5
L/min air flow rate. Subsequently, the pressure began to
diminish, as illustrated in Fig. 3. A similar result was
reported by Fadhil [32].

100.00 -
: /—O/*s"“
c 80.00 4
2
13)
2 70.00 A
(5]
e

60.00 -

50.00 T T T T )

0 1 2 3 4 5
QA (L/min)
—@—4 bar 5bar —@=—6 bar

Fig. 3. Flow rates of air impact on the rejection at various
pressures and (C=2000 ppm, Qm2o= 1 Liter/min, and
Temp. = 32°C)

The concentration polarization effect causes the
rejection to rise first, reach a maximum, and subsequently
decrease with increasing pressure; a correlation should be
established between the applied pressure and the rejection

percentage at a specific flow rate. Two phenomena would
take place simultaneously if the applied pressure
increased: more solute would be driven to the membrane
surface, leading to concentration polarization, and solute
rejection would decrease. Secondly, there will be an
increase in solvent flow; however, steric and electrical
considerations prevent the solute from traversing the
membrane [32, 33].

Moreover, the effect of operating pressure on permeate
flux and rejection has been studied at higher solute
concentrations. Fig. 4 shows the influence of increasing
pressure from 4 to 6 bar at 4000 ppm. The results
demonstrate that the effect of increasing pressure at
higher concentrations on the flux will be weaker,
increasing from 69.69 to 128.78 L/m2.h.at 3.5 L/min, but
these values are lower than the values obtained at
2000ppm. The rejection will increase from 77.68 to
87.175%, which is also lower than the values obtained at
2000 ppm. Due to the osmotic impact conveyed by the
increased salt content, there is a noticeable decrease in
flux [34]. This aligns with experiments conducted by

Fadhil, Gherasim, and Otero-Fernandez, which
demonstrate that solute rejection decreases with
concentration [32, 35, 36].
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Fig. 4. Flow rates of air impact on the flux at various
pressures and (C=4000 ppm, Qw2o= 1 Liter/min, and
Temp. = 32°C)

The concentration polarization effect is more
pronounced at elevated feed concentrations due to the
convective transport of both the solvent and the solute.
The presence of salt induces a disparity in viscosity
between the bulk solution and the membrane pore,
elucidating the reduction in solute rejection and flux as
salt concentration escalates. According to Fig. 5 [37, 38].

On the one hand, as a result of electrostatic attraction,
which causes the adsorption of counter-ions in the
membrane, an electric double layer forms when an
excessive amount of salt ions builds up in or on
membrane pores, thereby increasing the electroviscous
effect and lowering permeate flow. On the other hand, a
higher salt concentration increases the bulk viscosity,
which in turn reduces back-diffusion of solute away from
the membrane, making the CP layer more noticeable and
decreasing permeate flow [39].
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Further experiments were conducted at C=10000 ppm
and 15000 ppm to investigate the effects of solute
concentrations above 4000 ppm on permeate flux and
rejection. The results reveal that the flux dropped to 25.5
and 12 L/m2. h. and the rejection decreased to 66.7 % and
51% for solute concentrations of 10000 and 15000 ppm at
3 L/min air flow rate, respectively. The decrease in flow
and rejection is mainly related to concentration
polarization on the membrane surface. As the
concentration of dissolved materials increases, these
particles concentrate on the membrane surface more
quickly than they can flow through or be removed, as
demonstrated in Fig. 6 and Fig. 7.
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Fig. 8 and Fig. 9 show the effects of temperature on
permeate flux and rejection. The results demonstrate that
an increase in the feed temperature from 20 °C to 32 °C
increases the flux from 76.5 to 147 (L/m2. h) and rejection
from 85.90 to 91.75%. increases the flux from 76.5 to 147
(L/m2. h) and rejection from 85.90 to 91.75%. This is
attributed to the increase in the active layer thickness as
the solution temperature rises, leading to an increase in
the membrane's pore size, most likely due to thermal
expansion [40]. Additionally, it was thought that the

increase in permeate flux was due to changes in the
membrane and solution viscosities [41].
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4- Conclusion

The technique of air sparging coupled with
nanofiltration had a significant impact on desalination
process performance compared to NF without sparging.
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The results indicated an evident increase in permeate flux
when using air. The flux increased by 109.09% and
80.85% without air sparging, and by 4% and 6% with air
sparging at 4 and 6 bar, respectively. Also, at different
concentrations of 4000 and 15000 ppm, the flux increased
by 80.85% and 41.18%, respectively. Moreover, at
solution flow rates of 1 and 1.5 L/min, the flux increased
by 680% and 85%, respectively. Furthermore, pressure
and temperature increase the permeate flux, while high
feed concentrations decrease it. The maximum flux and
the high rejection percentage were achieved at 2000 ppm
and 6 bar, with a value of 168 L/m2. hr., and of 90.8%,
respectively.
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