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Abstract 
 

   The development of new, cleaner technologies is presently receiving a lot of attention to capture pollutant CO2 gas. 13X zeolite is 

one of the most popular adsorbents employed for this purpose. Batch and continuous fluidized beds were used to examine the 

adsorption capacity. Isothermal and kinetic models for the batch were determined at 1–5 bar and 298 K and 303 K pressure range and 

temperatures, respectively. The Langmuir model fitted the process with qm = 4.01 mmol/g and a correlation R2 = 0.986. Pseudo-first 

order was also fitted with a correlation of R2 = 0.997. The impact of the inlet CO2 concentration (5%, 10%, and 14%), the bed heights 

varied between (5, 15, 25) cm, with a flow rate range of (6, 10, 14) L/min at temperature 298 K and pressure of 0.5 bar (gauge 

pressure), was investigated by utilizing the area under the breakthrough curve in a continuous fluidized bed experiment. Lower flow 

rate (6 l/m), bed height (25 cm), and higher CO2 initial concentration (14%) achieved the best results. 
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1- Introduction 
 

   Burning fossil fuels contributes to global warming and 

releases harmful pollutants into the atmosphere that can 

harm human health, including carbon dioxide, nitrogen 

dioxide, atmospheric ammonia, and polycyclic aromatic 

hydrocarbons [1, 2]. Assuming continuous increases in 

greenhouse gas emissions, the concentration of 

greenhouse gases in the atmosphere by the end of the 

century might be four times greater than pre-industrial 

levels [3].  

   Prioritizing the gradual substitution of ecologically 

benign energy sources for fossil fuels as the primary 

energy source has emerged [4]. Even though tremendous 

effort is currently being put toward developing new and 

cleaner technologies, like chemical looping combustion, 

new gasification technologies for power plants, and 

hydrogen-based fuel cells, adopting of appropriate post-

combustion technologies can result in immediate and 

effective CO2 mitigation. Growing interest is being shown 

in using porous materials for CO2 capture within the 

context of the carbon capture and storage (CCS) strategy, 

to reduce short-term CO2 industrial emissions [5]. 

   Nowadays, amine-based absorption [6], membrane 

separation [7], cryogenic distillation [8], and adsorption 

[9] are among the methods used for the separation and 

capture of CO2 gas. 

   Adsorbents need to possess a variety of characteristics 

in order to be able to extract CO2 gas molecules from 

other gas combinations. The high surface area, porous 

structure, and better selectivity are necessary to enhance 

adsorption capacity [10]. One of the most widely used 

adsorbents for this purpose is 13X zeolite [11, 12]. 

   Industrial designs and units have effects that can be 

used in production activities. Although fluidized beds 

provide better heat and mass transfer rates than packed 

beds in many areas, there are additional technical barriers 

to their design and use [13]. Complete mixing of these 

particles with the flowing medium creates ideal 

conditions for efficient operation [14]. When a fluidized 

bed is used for adsorption, the adsorbed molecules can 

fully contact the adsorbent, which solves many common 

problems with packed bed adsorbents, including local 

temperature rise, bed clogging, uneven fluid distribution, 

and large bed pressure drop. [15]. 

   Many studies were conducted on 13X zeolite for 

capturing CO2. Girimonte et al. conducted an 

investigation into CO2 adsorption on 13X zeolite pellets 

using a fluidized bed. The experiments compare the 

performance of a confined and conventional fluidized bed 

using the same apparatus at ambient temperature and 

pressure. The results showed that the confined bed has a 

higher adsorption capacity of 108 mg/g under 25 °C and 1 

atm [16]. Khoramzadeh et al. studied the synthesis and 

isothermal analysis of zeolites 13X, 4A, 5A, and beta for 

CO2 adsorption. They synthesized these zeolites using 

hydrothermal methods and characterized them using 

instrumental analysis techniques. The results showed that 
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the highest adsorption capacity was found for zeolite 13X, 

while the lowest was found for zeolite beta. The Sips and 

Langmuir isotherm models were used to match the data, 

with the Sips model showing the best correlation [17]. 

Alibolandi et al. studied the separation of CO2 gas from a 

mixture of CO2/N2 (80% N2 and 20% CO2) using the 

vacuum pressure swing adsorption (VPSA) process 

technique. Experiments were performed in an eight-step, 

four-bed setup using zeolite 13X and carbon molecular 

sieve (CMS) as adsorbents. A pressure range of 2.7–4.7 

bar, cycle times of 360–600 s, the product flow rate of (1–

3) L/min, and a temperature of 30 °C were the conditions 

employed. With 560 s for a cycle time of 3.7 bar, the 

maximum purity of 97.6% was obtained for the zeolite 

13X adsorbent [18]. Fashi et al. conducted CO2 capture 

adsorption on modified 13X zeolite with piperazine 

solution to examine adsorption capacity. The maximum 

adsorption capacity was obtained at a temperature of 25 

°C, a pressure of 5 bar, a piperazine concentration of 2 

wt.%, an adsorbent amount of 1 g, and a particle size of 

200 mm. The adsorption capacity of Zeolite 13X 

increased from 193.844 to 242.084 mg/g after 

modification. The empirical isotherm data are more 

consistent with the Freundlich model. The best adsorption 

kinetic model was the Elovich model [19]. 

   The aim of the present research is to investigate the 

adsorption capacity of 13X zeolite particles to adsorb CO2 

as well as to study the influence of operation mode, i.e., 

batch study on the adsorption isotherm and kinetics, and 

continuous study was performed in fluidized bed at 

various CO2 concentrations, flow rates, and static bed 

heights. The research has focused on the comparison 

between the two modes of operation, i.e., the batch and 

continuous modes, and it did not focus on the type of 

adsorbent.  

 

2- Theoretical aspects  

 

2.1. Adsorption isotherm models 

 

   Langmuir isotherm: This model describes the 

performance of fluid-solid adsorption on zeolite. This 

theory proposed that the monolayer of adsorbed polluted 

fluid can be formed on a limited number of sites 

identically on equal locations without the interaction 

between neighboring adsorbed molecules. The model 

considers sorption to be uniform and the activation energy 

of sorption to be equal [20]. Many forms of Langmuir 

isotherm equations are found in the literature, and the 

linear one is [21]: 

 
1

qe
=

1

qm KL Ce
+

1

qm
                       (1) 

 

   Freundlich Isotherm: assumes multilayer sorption on 

different sites and the surface is heterogeneous, many 

interactions between molecules take place due to different 

activation energies of molecules, the Freundlich linear 

equation is [21]: 

   

qe = log KF +
1

n
log Ce         (2) 

   According to the Temkin [22] isotherm equation, 

adsorption is characterized by a uniform distribution of 

binding energies, and the heat of adsorption of all the 

molecules in the layer decreases linearly with coverage 

because of adsorbent-adsorbate interactions. The linear 

equation is [23]:  
 

qe = βTlnKT + βTlnCe       (3) 
 

   When the Gaussian energy disperses across a 

heterogeneous surface, the Dubinin-Kaganer-

Radushkevich isotherm is typically employed [24]. 

According to Vijayaraghavan et al. [20] and Theivarasu 

and Mylsamy [25], the model is a semi-empirical 

equation that describes a pore-filling mechanism with 

implausible asymptotic behavior and is unable to predict 

Henry's law at low pressure. Also, according to 

Vijayaraghavan et al. [26], the model is utilized to 

differentiate between the chemisorption and 

physiosorption of iron metal. The following depicts the 

Dubinin-Kaganer-Radushkevich isotherm model: 
 

lnqe = lnqm − KDε2        (4) 
 

 ε is Dubinin–Kaganer– Radushkevich isotherm constant 

which can be determined using the equation below: 
 

ε = RTln(1 +
1

Ce
)        (5) 

 

2.2. Adsorption kinetics  
 

   For physical adsorption, the reversible interaction 

between the adsorbent and adsorbate was described by a 

pseudo-first-order equation. On the other hand, the 

chemical adsorption was mostly explored using the 

pseudo-second-order equation [27, 28]. A model of 

intraparticle diffusion is required in order to identify the 

rate-limiting phase that impacts the adsorption kinetics 

[29]. The pseudo-first order is given by Eq. 6: 
 

ln(𝑞𝑒 − 𝑞𝑡) = ln 𝑞𝑒 − 𝐾1 𝑡       (6) 
 

   The relation of pseudo-second order is expressed as: 
 
t

qt
=

1

K2qe
2 +

t

qe
            (7)  

 

The intra-particle model is represented by Eq. 8: 
 

qt = Kint1/2 + C         (8) 
 

   The Elovich kinetic linear model [30] can also be 

utilized and represented by Eq. 9: 
 

qt =
1

βE
ln(αβE) +

1

βE
lnt       (9) 

 

3- Experimental work 
 

3.1. Batch apparatus 
 

   Fig. 1 illustrates the experimental setup of the 

adsorption equilibrium. Two tube vessels were utilized for 

this purpose with a volume of 0.5 L each; one of them 

was the reservoir, and the other was the adsorber, which 
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was made of iron. All fittings and tubes were made of 3/8 

copper with 3 valves (V1, V2, and V3) to control the flow 

of gas, and the rig was provided with a pressure gauge to 

measure the applied pressure. The temperature was to be 

controlled by using a hot plate (Dragon Lab, MS-H-Pro, 

China), and gas CO2 was supplied from the cylinder 

(99.9% purity was purchased from Albilal Gas Company 

located in Baghdad), provided with a regulator. Also, a 

vacuum pump (vacuum pump, 2XZ-4, China) was used in 

the experiment. 

 

 
Fig. 1. Schematic diagram of batch adsorption apparatus 

 

3.1.1. Method 

 

   Table 1 displays the features and technical 

specifications of the commercial zeolites 13X that were 

purchased from China and utilized in the experiment with 

particle density 1440 kg/m3 [31]. To remove any 

moisture, the sample was first heated to 373 K for two 

hours. Also, prior to every measurement, the sample 

underwent one hour of degassing at 0.1 bar of vacuum. 

 

Table 1. Technical characterizations of commercial 

zeolites 13X 
Properties Unit Value 

Particle diameter Mm 0.4-0.8 

Total Pore volume /g3cm 0.370 
Surface area /g2m 786.38 

Specific gravity - 1.44 

Moisture content Wt % ≤ 0.5 
Bulk density 3Kg/m 650 

 

   For the isotherm test, through valve V1, carbon dioxide 

gas was injected into the reservoir chamber until the 

necessary pressure was obtained. When the value reached 

a steady state, V1 was closed, and the pressure value was 

then recorded. then valve V2 was opened, allowing gas to 

flow to the adsorber while valve V3 was still closed, and 

then the second value was recorded after maintaining 

equilibrium. A mass balance is used for estimating the 

amount of adsorbed CO2 gas at equilibrium to obtain the 

following equation [32]. 

 

qe =
[(Ci−Cf)Vr−Cf Ԑ° Va]

w
                   (10) 

 

   For the kinetic test, valve V1 was opened to allow gas 

CO2 enter the reservoir vessel until it reaches a specific 

pressure value, then valve V2 was opened to make gas 

expand into the adsorber vessel, using a timer to record 

pressure values every time interval till it reaches 

equilibrium. The amount of adsorbed CO2 gas at time t 

can be given in the following equation [32]. 

 

qt =
[(Ci−Ct)Vr−Ct Ԑ° Va]

w
                  (11) 

 

3.2. Continuous experimental rig 

 

   The laboratory fluidized bed rig that was built for the 

CO2 adsorption test from gas mixture CO2/N2 is 

schematically shown in Fig. 2. With an internal diameter 

of 40 mm and a height of 500 mm, the glass-type QVF 

column was outfitted with two 0.35 mm aperture sieves at 

both ends: the top and the bottom to regulate gas 

distribution and retain packing particles in place. Process 

conditions were measured with the installation of 

temperature sensors and pressure gauges. Gases entering 

and leaving the system are measured by flow meters. CO2 

and N2 gas cylinders (were purchased from Albilal Gas 

Company located in Baghdad); they were the mixture of 

gases used in the experiment; each gas had a purity of 

98%. The outlet CO2 concentration was determined using 

a GEOTECH CO2 analyzer (Geotechnical Instruments, 

BIOGAS 5000, United Kingdom). 

 

 
Fig. 2. Schematic diagram of experimental setup for CO2 

adsorption in fluidized bed 

 

3.2.1. Method 

 

   In this experiment the particles used are group Geldart 

B, the minimum fluidization velocity Umf for the solid 

particles has been calculated using Wen and Yu equation 

[33]. 

 

Umf =
μg

ρgdp
√(33.7)2 + 0.0408

dp
3 ρg(ρp−ρg)g

μg
2 − 33.7                (12) 

 

   For a given temperature and partial pressure of CO2, the 

specific equilibrium amount of adsorbed CO2 can be 
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determined by integrating the breakthrough curve based 

on the following mass balance equation [34]: 

 

qads =
Q

w
∫ (C₀

t=t

t=0
− Ct)dt                    (13) 

 

   The conditions for each adsorption experiment can be 

found in Table 2. The solid adsorbent had been heated to 

373 K to eliminate any traces of moisture and CO2 

adsorbed molecules, and then it was exposed to argon gas 

prior to each run. In a typical experiment, the sorbent was 

loaded in the column to reach the desired bed height level. 

 

Table 2. Experimental data 
Experimental condition Data 

Bed height, H 5 cm, 15 cm, 25 cm 

Column length, L 500 mm 

Column diameter, D 40 mm 

Inlet CO2 concentration, C₀ 5%, 10%, 14 % 

Inlet flow rate, Q 6 L/m, 10 L/min, 14 L/min 

Vacuum pressure 0.1 bar 

Adsorption temperature, T 298 K 

Total pressure, P 0.5 bar 

 

   A series of experiments were performed at a 

temperature 298 K and total pressure of 0.5 bar by 

employing many variables (bed height, flow rate, and 

initial concentration of CO2), this process was carried out 

in a continuous operation method and the amount of 

carbon dioxide adsorbed was equivalent to the area under 

the breakthrough curve and through the use of the Eq. 13. 

 

4- Results and discussion 

 

4.1. Batch adsorption isotherm 

 

   Pure CO2 gas was used only in the batch experiment, 

and the effects of both temperature and pressure were 

investigated. 

   According to Fig. 3, both isotherm curves show the 

same behavior irrespective of temperature, where the 

amount of CO2 adsorbed on the adsorbent increases 

dramatically as equilibrium pressure rises above the low-

pressure region before tending to stabilize as pressure 

rises further. The isotherm curve's quick rise indicated the 

ideal equilibrium pressure range, which supports the 

majority of adsorption activity. The curve's stabilized 

amount of CO2 adsorbed indicates that CO2 gas is 

occupying every adsorption site [35], signifying that the 

adsorbent's maximum capacity was obtained at 298 K and 

5 bar.  

   Additionally, the impact of temperature on the CO2 

adsorption isotherm on the 13X zeolite was observed. 

Raising the operation temperature reduces both the 

capacity and the total amount adsorbed on the adsorbent. 

A rise in temperature from 298 K to 303 K made the total 

amount of the adsorbed CO2 molecules unstable on the 

surface and increased the amount of CO2 molecules that 

desorbed (a further increase in temperature resulted in a 

further decrease in capacity) because of the increase in 

molecule interactions and surface energy [36]. This is 

consistent with the exothermic behavior of the 13X 

zeolite for CO2 adsorption. 

 

 
Fig. 3. Isotherm equilibrium curve relates CO2 amount 

adsorbed and partial pressure 1-5 bar at 298 K and 303 K 

 

   To explain the experimental results of CO2 adsorption 

on the surface of 13X zeolite, many isotherm models were 

used. Fig. 4 to Fig. 7, all illustrate the 13X zeolite 

isotherm models. According to data given in Table 3, 

Langmuir isotherm model was better for fitting the CO2 

adsorption data with a correlation value R2 of 0.986, other 

models showed a lower correlation coefficient. Based on 

these results, it was believed that monolayer adsorption 

was applicable on an ideal surface and no interaction 

between the neighboring adsorbed molecules [37]. 

 

 
Fig. 4. Langmuir isotherm model 

 

 
Fig. 5. Freundlich isotherm model 
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Fig. 6. Temkin isotherm model 

 

 
Fig. 7. Dubinin–Kaganer– Radushkevich isotherm model 

 

Table 3. Isotherm equilibrium data at 298 K and 303 K 

Model Parameters 
Temperature 

298 K 303 K 

Langmuir 

qm (mmol. g-1) 4.01 3.67 

KL (L.mmol- 1) 0.1259 0.1425 

R2 0.986 0.989 

Freundlich 
KF (mmole1–1/n. g) 0.467 0.602 
n (g.L-1) 1.437 1.91 

R2 0.965 0.95 

Temkin 
KT (L. mmol-1) 0.921 1.223 
β (J.mol-1) 1.0454 0.8654 

R2 0.954 0.958 

Dubinin–
Kaganer– 

Radushkevich 

qD (mmol. g-1) 3.475 2.980 
KD (mmol2.J-2) 0.0755 0.0386 

R2 0.971 0.941 

 

4.2. Batch adsorption kinetics 

 

   The rate of adsorption of the related adsorbent and 

adsorbate can be represented by adsorption kinetics. The 

reaction order and adsorption rate constant (k) obtained 

from the adsorption kinetics model consider an indication 

of the characteristics of adsorption. To estimate the CO2 

adsorption rate of 13X zeolite, the CO2 adsorption 

kinetics data at different temperatures, 298 K, 303 K, 

under the pressure of 5 bar were obtained.     

   From Fig. 8 adsorption capacity in the time intervals 

decreases as the temperature increases at constant 

pressure. At the earlier stage of adsorption, it was noticed 

that carbon dioxide attracted quickly to the surface of bed 

particles, then it slowed down till it reached saturation. 

    

 

 
Fig. 8. Kinetic equilibrium curve relates CO2 amount 

adsorbed and time for 5 bar at 298 K and 303 K 

 

   In the case of reaction models, due to Fig. 9 to Fig. 12, 

experimental data would be fitted with equations like 

pseudo-first order, pseudo-second order, intra-particle, 

and Elovich models, which helped in knowing the 

reaction order and rate constants. Table 4 shows that CO2 

adsorption taken at temperatures of 298 K and 303 K 

follows the rate controlling step of pseudo-first order, as it 

has the biggest coefficient correlation R2 value [38]. 

 

 
Fig. 9. Pseudo-First order model 

 

 
Fig. 10. Pseudo-Second order model 

 

4.3. Continuous adsorption 

 

   To investigate the fluidization parameters of 13X zeolite 

utilized in the design rig and the effects of the main 

characteristics on the fluidization experiment. Tests were 

conducted under a constant temperature and pressure of 

298 K and 0.5 bar. All results are shown in Table 5. 
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Fig. 11. Intra-particle kinetic model 

 

 
Fig. 12. Elovich kinetic model 

 

Table 4. Kinetic equilibrium data at 298 K and 303 K 

Model Parameters 
Temperature 

298 K 303 K 

pseudo-first order 

)1−(mmol. g eq 3.64 2.89 

)1-(min 1K 0.5781 0.4786 

2R 0.997 0.999 

pseudo-second 

order 

)1−(mmol. g eq 5.5 4.61 

)1−(g. min. mmol 2K 0.0528 0.0671 

2R 0.958 0.972 

Intra-particle 

)0.5-.min1-(mmol.g iK 1.4629 1.2343 

C 0.0199 0.0696 

2R 0.972 0.98 

Elovich 

)1-β (g. mmol 0.8833 1.049 

)1-.min1-α ((mmol.g 3.858 3.449 

2R 0.993 0.997 

 

4.3.1. Effect of flow rate 

 

   The breakthrough curves at a temperature of 298 K and 

a pressure of 0.5 bar, with flow rates of (6, 10, 14) L/min, 

bed height of 5 cm, and CO2 concentration (14%) in the 

input gas stream were investigated in the tests using 13X 

zeolite. Fig. 13 illustrates how the breakthrough time in 

the adsorption column decreased as the flow rate 

increased. The breakthrough time varied significantly, 

starting at 60 seconds, and the saturation time for 6 L/min 

has occurred at 160 seconds. As the flow rate increased to 

14 L/min, the saturation was reached earlier. Analyzing 

how the gas flow rate affects process performance and 

finding that a higher flow rate causes the breakthrough 

curve to achieve a steady state more quickly. That 

phenomenon was most likely caused by an increase in the 

gas–solid contact for flow rate 14 L/min; in other words, 

the rapid mass transfer could be the cause of the short 

breakthrough time [39]. By raising the flow rate, the 

saturation time (steeper curve) was shortened, and by 

using data obtained and applying equation 13, the 

capacity was smaller as illustrated in Table 5. 

 

4.3.2. Effect of bed height 

 

   The experiment followed the same parameters as shown 

in Fig. 14, with the exception that the flow rate was kept 

constant at 6 L/m and the bed heights varied between 5, 

15, and 25 cm. The breakthrough curve for the bed 25 cm 

showed a beneficial trend; it started at around 180 s and 

terminated at 350 s. The saturation was decreased by 

following the arrangements 25 cm, 15 cm, and 5 cm, 

where the gas moved faster. This indicated that before the 

breakthrough, a significant portion of the particles were 

exposed to CO2 right away. This can be interpreted by the 

homogeneity provided to the particles due to fluidization 

[40]. To capture CO2 molecules, there has to be a larger 

open surface area in contact with the gas as the amount of 

adsorbent increases. By applying equation 13 using data 

C/C₀ vs. time, the amount adsorbed was enhanced as the 

bed became heavier, that is, the adsorption capacity 

became higher, as indicated in Table 5.   

 

4.3.3. Effect of initial concentration 

 

   Since the moment the gas mixture started to flow from 

the fluidized bed to the analyzer, data on CO2 

concentration were presented as a function of time 

(breakthrough curve). Fig. 15 shows the effect of the inlet 

CO2 concentration 5%, 10%, and 14% on the 

breakthrough curve with a constant flow rate of 6 L/min 

and a bed height of 5 cm. As was seen from Fig. 15, 

breakthrough time became shorter as the inlet 

concentration increased. The number of CO2 molecules 

available per unit volume of feed increased positively 

with the rise in the inlet CO2 concentration. Because of 

this, a greater concentration gradient between the gaseous 

and solid phases developed, which sped up the adsorbent 

bed's saturation by facilitating the mass transfer of CO2 

molecules from the feed to the porous adsorbent sites. 

Furthermore, as demonstrated by the rise in adsorption 

capacity of adsorbents in Table 5, an increase in the inlet 

CO2 concentration led to a larger uptake of CO2 

molecules. This might be because of the higher 

concentration gradient, which gave gas molecules more of 

a driving force to overcome their mass transfer resistance 

and result in a larger uptake [41, 42]. 
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Fig. 13. Breakthrough curve for 5 cm bed height, 14 % 

CO2 concentration with different flow rates at 298 K and 

0.5 bar 

 

 
Fig. 14. Breakthrough curve for 6 L/m flow rate, 14 % 

CO2 concentration with different bed heights at 298 K and 

0.5 bar 

 

 
Fig. 15. Breakthrough curve for 6 L/m flow rate, 5 cm 

bed height with different CO2 concentrations at 298 K and 

0.5 bar 

 

Table 5. Variables and uptake data at 298 K and 0.5 bar 
Ini. Concentration % 𝑄 (L/min) H (cm) (mmol/g) ads𝑞 

5 6 5 0.94 

10 6 10 1.71 

14 6 14 2.25 
14 10 14 1.9 

14 14 14 1.47 

14 6 14 2.98 
14 6 14 4.1 

 

 

 

 

5- Conclusion 

 

      An isotherm and kinetic studies were conducted on 

CO2 adsorption on 13X zeolite. Langmuir had the best 

correlation coefficient with R2 = 0.986 at 298 K and 5 bar 

among other models, Freundlich, Temkin, and Dubinin-

Kaganer-Radushkevich, which proved the monolayer 

distribution of molecules on an ideal surface. It was 

noticed that the saturation adsorption capacity of CO2 

from the mixture of N2 and CO2 increased appreciably 

with decreased bed temperatures. The saturation 

adsorption capacity rose from 3.67 to 4.01 mmol/g, with a 

decrease in bed temperature from 303 K to 298 K. The 

kinetic models used were pseudo-first-order, pseudo-

second-order, intra-particle, and Elovich models. The best 

performance was conducted at 298 K. The rate-

controlling step was described by pseudo-first-order, as 

the correlation coefficient R2 was 0.997 at 298 K and 

0.999 at 303 K.  

   Another set of experiments was conducted using 

continuous mode by studying the behavior of the 

breakthrough curve in a fluidized bed at a temperature of 

298 K and a pressure of 0.5 bar (low pressure), utilizing 

factors such as bed height, flow rate, and initial CO2 

concentration. A slow flow rate, increased bed height, and 

increased CO2 concentration were found to enhance 

adsorption capacity. The best results were q = 4.1 

mmol/g, obtained by 14% initial concentration, 25 cm bed 

depth, and a 6 l/m flow rate. With these ranges employed 

for the breakthrough test, the most effective parameter on 

adsorption capacity was bed height (bed weight), which 

explained that the employment of a fluidized bed 

enhanced the adsorption of CO2 due to more surface 

exposure to better gas-solid contact. 

 
Nomenclature   

 

symbol Meaning Unit 

1/n Adsorption intensity 1-L.g 

C The intercept - 

C₀ 
concentration at the inlet of  2CO

the column 
1-mmol. L 

eC 
Equilibrium concentration of 

adsorbate 
1-mmol. L 

fC Final concentrations 1-mmol. L 

iC Initial concentration 1-mmol. L 

tC concentration at time t 2CO 1-mmol. L 

pd Particle diameter M 

g Gravitational acceleration 2-m.s 

1K 
Rate constant of pseudo-first 

order adsorption 
1−min 

2K 
Rate constant of pseudo-second 

order adsorption 

g. min. 
1−mmol 

DK 
Activity coefficient related to 

mean sorption energy 
2-.J2mmol 

FK Freundlich isotherm constant 
. 1/n–1mmole

g 

inK 
Intra-particle diffusion rate 

constant 

-mmol.g
0.5-min.1 

LK Langmuir isotherm constant 1-L. mmol 
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TK Temkin binding constant 1-L.mmol 

Q 
Volumetric flow rate at the inlet 

of column 
1-L.min 

adq 
Adsorption capacity of the 

adsorbent 
1-mmol. g 

eq 
Adsorption capacity at 

equilibrium 
1-mmol. g 

mq Maximum adsorption capacity 1-mmol. g 

tq Adsorption capacity at time t. 1−mmol. g 

t Time Min 

aV Adsorber volume L 

rV Reservoir volume L 

W 
weight of the adsorbent in 

adsorber vessel 
G 

w Mass of the adsorbent G 

α Elovich initial sorption rate 
mmol. 

−1.min−1g 

Tβ Temkin heat of adsorption 1-J.mol 

Eβ 

Elovich constant related to the 

extent of surface coverαage and 

activation energy for 

chemisorption 

−1g. mmol 

ε 
Dubinin–Kaganer– Radushkevich 

isotherm constant 
1-J. mmol 

₀ε Over all bed void fraction - 

gμ Gas viscosity 1-. s1-kg. m 

gρ Density of gas 3-kg.m 

pρ Density of particles 3-kg.m 
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ت أجراء أختباراعن طريق  13Xتقييم أمتصاص ثاني اوكسيد الكربون على الزيولايت 

 الطبقة الدفعية والطبقة المميعة المستمرة
 

 2دينا رحيم رزيج ، 1رغد فريد قاسم المللي  ،، *1عامر عبدالخضر شنيت 

 
 قسم الهندسة الكيمياوية، كلية الهندسة، جامعة بغداد، العراق 1

 بانجي، ماليزيا 43600امعة كيبانجسان ماليزيا، ية وهندسة العمليات، كلية الهندسة والبيئة المبنية، جوقسم الهندسة الكيميا 2

 
  الخلاصة

 
د لملوث. يعكسيد الكربون او لالتقاط غاز ثاني أ يةتُكرس حاليًا العديد من الجهود لتطوير تقنيات جديدة ونظف   

بقة الطواحدًا من أشهر المواد المازة المستخدمة لهذا الغرض. تم استخدام الطبقة الدفعية و   13Xيت الزيولا
 حرارة المستمرة لفحص قدرة الامتزاز. تم تحديد موديلات تساوي الحرارة والحركية للطبقة الدفعية عند درجات

طابق موديل لانغماير مع نتائج العملية بـمقدار بار، حيث ت 5-1كلفن، وضغوط تتراوح بين  303كلفن و 298
امل المرتبة الاولى الزائف بمع تفاعل موديل، بينما تطابق  0.986ملي مول / غم وبمعامل دقة =  4.01سعة=

 باستخدام(، و %14، %10، %5كسيد الكربون بنسب )و . ايظا تم دراسة تأثير تركيز ثاني أ0.997دقة = 
 298( لتر/دقيقة تحت درجة الحرارة 14، 10، 6( سم، وبمدى معدل تدفق )25، 15، 5ارتفاعات الطبقة بين )

المنطقة الواقعة تحت منحنى الاختراق في تجارب الطبقة  مساحة خدامبار، من خلال است 0.5كلفن وضغط 
لثاني  ئيبتداسم(، والتركيز الأ 25(، وارتفاع السرير )3لتر/م 6المميعة المستمرة. حقق معدل التدفق المنخفض )

 ٪( أفضل النتائج.14كسيد الكربون )و أ
 

ة متزاز الطبقامتزاز، احتجاز ثاني أوكسيد الكربون، امتزاز الطبقة الدفعية، دراسة التساوي الحراري، دراسة حركية الا الكلمات الدالة:
 .المستمر، منحنى الاختراق، الطبقة المميعة

 

 

 

 

 


